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ABSTRACT
In this paper, we consider an extended version of the exponential Poisson distribution
and examine its theoretical properties. We derive expressions for the cumulative dis-
tribution function, survival function, failure rate function, pdf of the order statistics
and raw moments. We also discuss the maximum likelihood estimation procedures
and the Expectation-Maximization algorithm for estimating the parameters of this
distribution. Additionally, a statistical test is proposed to assess the significance
of the additional parameter introduced in the model. To demonstrate its practical
utility, we provide certain real-life data applications. Furthermore, with the help of
simulated datasets, it is shown that as the sample size increases, the average bias and
mean squared errors of the maximum likelihood estimators decrease in a consistent
manner.

KEYWORDS
EM algorithm; Gamma distribution; Maximum likelihood estimation; Poisson
distribution

1. Introduction

In recent years, the approach of mixing different lifetime models has gained significant
interest, and been widely applied to complex phenomena across various fields. Stan-
dard distributions, such as the exponential and gamma distributions are very effective
for modeling lifetime data and are commonly used in areas such as reliability analysis,
finance, insurance, economics, engineering, and beyond. In fact, these distributions are
often modified to better fit real-world data and scenarios, making them more appli-
cable in practical situations. The exponential and gamma distributions have become
central to reliability studies. They are frequently used to model the life expectancy
of systems, as they reflect different aspects of the failure process, such as wear and
tear, aging, or fatigue. Mixture models that combine these classical distributions, like
the exponential and zero-truncated Poisson (ZTP) distributions, are also commonly
used to characterize a decreasing failure rate. For example see [3], [9], [14], [6] and
[8]. Now the gamma distribution (GD) has been used quite extensively in reliability
and survival analysis, particularly when the data are not censored. Among these, the
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gamma distribution (GD) has been used quite extensively in reliability and survival
analysis, especially in cases where data is not censored. The gamma distribution has
two key parameters such as shape parameter and scale parameter. Depending on the
values of these parameters, the hazard function of the gamma distribution exhibits
various behaviors such as increasing, decreasing, or constant in modeling failure rates.
In real practice, many unforeseen situations arise, which reduces the choice of the fail-
ure model. In such cases, extensions of these classical models offer valuable tools for
capturing the intricacies of failure and lifetime analysis in practical scenarios. In this
paper, we introduce a new class of lifetime distributions by compounding the GD and
ZTP distributions. This results in a failure rate that can take various flexible shapes,
including non monotone patterns, which enhances the model’s ability to fit complex
datasets, making it more appealing.
This paper is organized as follows. Section 2 introduces the genesis of the GPD and
outlines some of its key properties. Section 3 presents various methods for estimating
the parameters of the distribution. In Section 4, we illustrate the practical utility of
the model through two real-world data sets. Finally, Section 5 includes a concise sim-
ulation study to evaluate the performance of the maximum likelihood estimators for
the parameters of the distribution.

2. Genesis and motivation of the new family

Suppose that a system has N subsystems functioning independently at a given time
where N has ZTP distribution with parameter λ. It is the conditional probability
distribution of a Poisson-distributed random variable, given that the value of the
random variable is not zero. The probability mass function (p.m.f) of N is given by
for

P (N = n) =
e−λ λn

(1− e−λ)Γ(n+ 1)
, (1)

where n = 1, 2, . . . , and λ > 0. Let W1,W2, . . . be a sequence of independent and
identically distributed gamma random variables with the following probability density
function (pdf).

f(w;α, β) =
βα

Γ(α)
e−βwwα−1, (2)

in which w > 0, α > 0 and β > 0.
Let Wi denote the failure time of the ith subsystem and Z denote the time
to failure of the first out of the N functioning subsystems. We can write Z =
min{W1,W2, . . . ,WN}. Then the conditional density function of Z given N = n is
given by

f1(z | N = n; α, β) = n
(Γ(α, βz)

Γ(α)

)n−1 βα

Γ(α)
e−βzzα−1,
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in which Γ(α, βz) =
∫∞
βz t

α−1e−t dt and Γ(α) =
∫∞
0 tα−1e−t dt. Now the marginal

density function of Z is the following, for z > 0, α > 0, β > 0 and λ > 0 .

g(z) =

∞∑
n=1

n
(Γ(α, βz)

Γ(α)

)n−1 βα

Γ(α)
e−βzzα−1 e−λ λn

(1− e−λ)Γ(n+ 1)

=
λβα zα−1e−λ−βz

(1− e−λ)Γ(α)

∞∑
n=0

(n+ 1) n! (λΓ(α,βz)
Γ(α) )n

(n+ 1)! n!
, (3)

which reduces to

g(z) =
λβα zα−1e

−λ−βz+λΓ(α,βz)

Γ(α)

(1− e−λ)Γ(α)
. (4)

A distribution with pdf (4), we call “the gamma Poisson distribution” or in short “the
GPD”. Here the parameters α and β control the shape of the distribution whereas λ
control the scale of the distribution. The special cases of the GPD’s are

• When α = 1 the GPD approaches to the exponential Poisson distribution (EPD)
of [9]

• When λ→ 0 the GPD tends to the gamma distribution
• If α = 1 and λ→ 0 GPD leads to exponential distribution with parameter β.

With different values of the parameters, different curvature forms of this pdf are ob-
tained as shown in Figure 1.

0 2 4 6 8 10 12
z0.0

0.1

0.2

0.3

0.4

0.5

g(z)

=1.5, =1, =10

=1.5, =1, =6

=1.5, =1, =4

=1.5, =1, =2

=1.5, =1, =0.5

Figure 1. Probability density plots of the GPD for particular values of α= 0.5, 2, 4, 6 and 10.
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Figure 2. Probability density plots of the GPD for particular values of β= 0.8, 1.2, 1.8, 2.4, 3 and 3.3.

From the Figures 1 and 2, the curves may be decreasing or unimodal, with a broad
range of skewness, peakedness, and plateness, but they are often almost symmetrical
or positively skewed. Moreover GPD can be used to model a wide range of lifetime
phenomena.
Now we have the following results.

Result 2.1. The cumulative distribution function (c.d.f) of the GPD is given by

G(z) =
1− e

−λ+λΓ(α,βz)

Γ(α)

1− e−λ
, (5)

in which z > 0, α > 0, β > 0 and λ > 0.

The proof is included in Appendix A.

Result 2.2. For z > 0, α > 0, β > 0 and λ > 0, the survival function of the GPD is
given by

S(z) =
e
−λ+λΓ(α,βz)

Γ(α) − e−λ

1− e−λ
. (6)

Proof is straightforward; hence omitted.

Result 2.3. The failure rate function of GPD is given by

h(z) =
λβα zα−1 e−βz

Γ(α)(1− e
−λΓ(α,βz)

Γ(α) )
. (7)

Proof is straightforward from the definition of failure rate function in the light of
(4) and (6); hence omitted.
The failure rate plots of the model for particular values of the parameters α and β are
included in Figures 3 and 4 respectively.
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Figure 3. Gamma Poisson failure rates for particular values of α= 0.5, 1, 3, 6, 8 and 10.
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Figure 4. Gamma Poisson failure rates for particular values of β= 0.36, 0.98, 1.78, 2.33, 3.13 and 4.41.

Result 2.4. The pdf of gi:m(.) of the ith order statistic Zi of a random sample
Z1, Z2, . . . , Zm taken from GPD is given by

gi:m(z) =
m!λβα zα−1e

−λ−βz+λΓ(α,βz)

Γ(α)

Γ(α)(i− 1)!(m− i)!

(
1− e

−λ+λΓ(α,βz)

Γ(α)

)i−1

(1− e−λ)i

×
(eλΓ(α,βz)

Γ(α) − 1

eλ − 1

)m−i
. (8)

Proof follows from the following general formula for the pdf of the ith order statistic
of a continuous random variable.

gi:m(z) =
m!

(i− 1)!(m− i)!
g(z)G(z)i−1(1−G(z))m−i,

in which g(.) and G(.) are respectively the pdf and cdf of the corresponding distribu-
tion.
Next we obtain an expression for the rth raw moment of the GPD through the following
proposition.
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Result 2.5. For r ≥ 1, the rth raw moment µ
′

r of the GPD with pdf (4) is the
following.

µ
′

r =
βe−λ

1− e−λ

∫ λ

0
[F−1(1− u

λ
)]r eudu, (9)

where F−1(.) is the inverse cdf of gamma distribution.

Now one can compute the rth raw moment numerically by using some mathematical
softwares.

Corollary 2.6. The first and second raw moments of the GPD are respectively

E(Z) =
βe−λ

1− e−λ

∫ λ

0
(F−1(1− u

λ
)) eudu (10)

and

E(Z2) =
βe−λ

1− e−λ

∫ λ

0
(F−1(1− u

λ
))2 eudu. (11)

Consequently, the variance of the GPD is

V ar(Z) =
βe−λ

1− e−λ

∫ λ

0
(F−1(1− u

λ
))2 eudu− [E(Z)]2. (12)

3. Estimation

In this section we present various estimation procedures for obtaining the estimators of
the parameter α, β and λ of the GPD with pdf (4) and discuss asymptotic variances
and covariances of the maximum likelihood estimates (MLEs) together with a test
procedure.

3.1. Method of maximum likelihood

The log-likelihood function based on a random sample Z1, Z2, . . . , Zk taken from the
GPD is the following, in which ξ = (α, β, λ).

ℓ(ξ) = k ln(λ) + kα ln(β) + (α− 1)

k∑
i=1

ln zi − k λ− β

k∑
i=1

zi +
λ

Γ(α)

k∑
i=1

Γ(α, βzi)

− k ln Γ(α)− k ln (1− e−λ) (13)

The maximum likelihood estimators of ξ = (α, β, λ) can be directly obtained by
maximizing the log likelihood function (13) or alternatively, by finding solution for
the following four likelihood equations, in which

ψ(k)(α) =
∂k lnΓ(α)

∂αk
(14)
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and

T (m, s, x) = Gm,0
m−1,m

(
0, 0 . . . , 0

s− 1,−1 . . . ,−1

∣∣∣∣x) (15)

which is a particular form of the Meijer G-function.

∂ℓ(ξ)

∂α
= k ln β +

k∑
i=1

ln zi +
λ

Γ(α)

k∑
i=1

[
ln βzi Γ(α, βzi) + βzi T (3, α, βzi)

− ψ(α)Γ(α, βzi)
]
− k ψ(0)(α) = 0, (16)

∂ℓ(ξ)

∂β
=
k α

β
−

k∑
i=1

zi −
λ

Γ(α)

k∑
i=1

(βzi)
α−1e−βzi = 0 (17)

and

∂ℓ(ξ)

∂λ
= k

(
1

λ
− 1− 1

eλ − 1

)
+

k∑
i=1

Γ(α, βzi)

Γ(α)
= 0. (18)

Now for solving likelihood equations one can utilize any of the mathematical softwares
like MATHEMATICA, R softwares etc.

3.2. An EM algorithm

The expectation maximization(EM) algorithm introduced by [7] is one of the best
methods to obtain MLEs in case of mixture models. This method is a powerful tool for
handling the missing data (or incomplete data) situations. It is an iterative method by
frequently replacing the missing values in the data with estimated values and updating
the parameter estimates. If the amount of information in the missing data is large,
it will converge slowly when compared to Newton-Raphson method and it is more
reliable than any other method.
To start the algorithm, we have the complete data distribution defined with density
function

g(z, n; ξ) = g(z | N = n;α, β) P (n;λ)

= n
(Γ(α, βz)

Γ(α)

)n−1 βα

Γ(α)
zα−1e−βz e−λ λn

Γ(n+ 1)(1− e−λ)
, (19)

where n = 1, 2, . . . , z > 0, α > 0, β > 0 and λ > 0.
Now, the E-step for the algorithm can be derived as given below. Let ξ(h) =

(α(h), β(h), λ(h)) be the initial estimate. Then the conditional expectation of (N |
Z; ξ(h)) can be computed as follows.

P (N | Z; ξ(h)) =
g(z, n; ξ)

g(z)

=

(
λΓ(α,βz)

Γ(α)

)n−1
e
−λΓ(α,βz)

Γ(α)

(n− 1)!
(20)
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and

E(N | Z; ξ(h)) =

∞∑
n=1

n P (N | Z; ξ(h))

=

(
1 +

λΓ(α, βz)

Γ(α)

)
. (21)

The EM cycle is completed with M-step, which is complete data maximum likelihood
over ζ, with missing M’s replaced by their conditional expectations. Then the log-
likelihood function corresponding to the joint density function in (19) is

ℓ(ξ(h)) =

k∑
i=1

ln ni +

k∑
i=1

(ni − 1) ln (λ
Γ(α, βzi)

Γ(α)
) + kα ln(β) + (α− 1)

k∑
i=1

ln zi

− β

k∑
i=1

zi − k λ+

k∑
i=1

ni ln λ− k ln Γ(α)−
k∑

i=1

ln Γ(ni + 1)

− k ln (1− e−λ), (22)

from which the corresponding estimators are obtained as given below, in which ψ(.)
and T (.) are as defined in (14) and (15).

∂ℓ(ξ(h); zi)

∂α
= 0 =⇒

∑k
i=1

(ni−1)
λΓ(α,βzi)

[
ln βzi Γ(α, βzi) + βzi T (3, α, βzi)

− ψ(α)Γ(α, βzi)
]
− k ln β +

∑k
i=1 ln zi − kψ(α) = 0 (23)

∂ℓ(ξ(h); zi)

∂β
= 0 =⇒

∑k
i=1

(ni−1)e−βzi (βzi)α−1

Γ(α,βzi)
+ kα

β −
∑k

i=1 zi = 0 (24)

and

∂ℓ(ξ(h); zi)

∂λ
= 0 =⇒

∑k
i=1 ni−1

λ − k +
∑k

i=1 ni

λ − k e−λ

(1−e−λ) = 0, (25)

where ni =

(
1 + λΓ(α,βz)

Γ(α)

)
, obtained from the E-step.

3.3. Asymptotic variances and covariances of the MLEs

The asymptotic variance examines the quality of the MLEs. The large sample
approximation of the MLE’s of ξ = (ξ1, ξ2, ξ3) = (α, β, λ), is approximately
trivariate normal with mean ξ and variance–covariance matrix, which is the inverse
of the expected information matrix H(ξ) = E(I; ξ)) where I = I(ξ; z) is the observed

information matrix with elements Iij = − ∂2l
∂ξiξj

with i, j = 1, 2, 3 and the expectation

is to be taken with respect to the distribution of Z. Differentiating (16), (17) and (18)
the elements of the symmetric third order observed information matrix are found.
Elements of the observed information matrix are derived in terms of
I11, I12, I13, I22, I23 and I33, which are given in Appendix B. The inverse of
expected information matrix evaluated using the parameter estimates gives the
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asymptotic variance-covariance matrix of the MLEs.

For interval estimation, let V̂ ar(α̂), V̂ ar(β̂) and V̂ ar(λ̂) denote the estimates of the
main diagonal elements of the inverse of the observed information matrix, evaluated
at the MLE of the parameters. The large-sample 95% confidence intervals (CI) for
the parameters α, β and λ are

α̂± Zα1
2
∗
√
V̂ ar(α̂), β̂ ± Zα1

2
∗
√
V̂ ar(β̂)

and

λ̂± Zα1
2
∗
√
V̂ ar(λ̂)

respectively, where Zα1
2

is the upper α1

2 quantile of the standard normal distribution

and α1 is the 5% level of significance.

3.4. Testing

3.4.1. Generalized Likelihood Ratio Test

Here we consider the generalized likelihood ratio test (GLRT) procedure for testing
the significance of the parameters α and λ of the GPD (α, β, λ). Now we test the
null hypothesis H0 : EPD versus the alternate hypothesis H1 : GPD or equivalently
H0 : α = 1 versus H1 : α ̸= 1. Similarly, we test the null hypothesis H0 : GD versus
the alternate hypothesis H1 : GPD or equivalently H0 : λ = 0 versus H1 : λ ̸= 0. The
test statistic is

LRT = −2 ln

[
supξ∈Ξ0

L(ξ̂∗ | y)
supξ∈Ξ1

L(ξ̂ | y)

]
, (26)

in which ξ̂ is the maximum likelihood estimates of ξ = (α, β, λ) with no restriction,

and ξ̂∗ is the maximum likelihood estimates of ξ when α = 1 and λ = 0 respectively.
The test statistic given in (26) follows chi-square distribution with one and two degree
of freedom respectively.

4. Illustrative examples

In this section, the GPD is applied to model two complete data sets. For illustrating
the usefulness of the GPD(α, β, λ), here we compare the proposed model with the
exponentiated Weibull distribution (EWD) by [12], the generalization of exponential
geometric distribution (GEGD) by [10], the generalized exponential Poisson distribu-
tion (GEPD) by [4] and Exponentiated Lomax distribution (ELD) by [2].
EWD(α, γ, λ)

fEWD(z) = αγλγzγ−1(1− e−(λz)γ )α−1e−(λz)γ ,
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in which z > 0, α > 0, γ > 0 and λ > 0.
GEGD(α, β, p)

fGEGD(z) =
αβ(1− p)e−βz(1− e−βz)α−1

(1− pe−βz)α+1
,

in which z > 0, α > 0, β > 0 and p ∈ (0, 1).
GEPD(α, β, λ)

fGEPD(z) =
α β λ e−λ−βz+λe−βz

(
1− e−λ+λe−βz

)α−1

(1− e−λ)
α ,

in which z > 0, α > 0, β > 0 and λ > 0.
ELD(α, λ, θ)

fELD(z) = θαλ(1 + αz)−(λ+1)(1− (1 + αz)−λ)θ−1,

in which z > 0, α > 0, λ > 0 and θ > 0.
First we consider an uncensored data set from [11]. The data gives 100 observations
on breaking stress of carbon fibres (in Gba) is
Data Set 1
3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51,
1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 3.68, 4.91,
1.57, 2., 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.2, 2.85,
2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 4.7, 2.03, 2.82, 2.5, 1.47, 3.22, 3.15,
2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05,
3.6, 3.11, 1.69, 4.9, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 0.98, 1.59, 1.73, 1.71, 1.18, 4.38,
0.85, 1.8, 2.12, 3.65.
The second data set is given by [5] on the fatigue life of 6061-T6 aluminum coupons
cut parallel to the direction of rolling and oscillated at 18 cycles per second. The data
set consists of 101 observations with maximum stress per cycle 31,000 psi. The data
are:
Data Set 2
70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113,
114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128,
129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134,
136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144,
145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163,
163, 164, 166, 166, 168, 170, 174, 201, 212.
We have fitted the GPD(α, β, λ) to the data sets with the help of the MATHEMAT-
ICA software and the numerical results obtained are given in Tables 1 and 2.
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Table 1. Parameter estimates, Kolmogorov-Smirnov (K-S) statistics and P-values obtained from the fit of

each of the five distributions for the data sets

Data set Distribution Estimates K-S P-value
(n= 100) GPD(α, β, λ) (3.3892, 0.2757, 38.8351) 0.0677 0.7481

EWD(α, γ, λ) (3.9938, 0.5946, 1.4981) 0.0823 0.5068
GEGD(α, β, p) (8.4709, 0.9742, 0.0761) 0.1058 0.2124
GEPD(α, β, λ) (9.8798, 0.9917, 0.3415) 0.1045 0.2247
ELD(α, λ, θ) (0.1360, 9.2265, 9.0242) 0.1177 0.1251

(n= 101) GPD(α, β, λ) (20.5384, 0.1122, 7.1697) 0.0594 0.8712
EWD(α, γ, λ) (5.0803, 2.7754, 0.0098) 0.1004 0.2654
GEGD(α, β, p) (82.9031, 0.0367, 0.0187) 0.1276 0.0770
GEPD(α, β, λ) (3.2640, 0.0181, 0.0146) 0.5201 0.0001
ELD(α, λ, θ) (73.2543, 0.4366, 67.5443) 0.6464 0.0001

Table 2. Information measures such as AIC, BIC, AICc, HQIC and log likelihood values obtained from each

of the five distributions for the data sets

Data set Distribution AIC BIC AICc HQIC ℓ
(n= 100) GPD(α, β, λ) 288.656 296.471 288.906 291.819 -141.328

EWD(α, γ, λ) 293.956 301.771 294.206 297.119 -143.978
GEGD(α, β, p) 299.661 307.477 299.911 302.824 -146.830
GEPD(α, β, λ) 300.846 308.661 301.096 304.009 -147.423
ELD(α, λ, θ) 305.708 313.524 305.958 308.871 -149.854

(n= 101) GPD(α, β, λ) 909.440 917.255 909.690 912.603 -451.720
EWD(α, γ, λ) 913.644 921.459 913.894 916.807 -453.822
GEGD(α, β, p) 934.489 942.305 934.739 937.652 -464.244
GEPD(α, β, λ) 1103.399 1111.215 1103.649 1106.562 -548.699
ELD(α, λ, θ) 1351.982 1359.798 1352.232 1355.145 -672.991

Now, we have computed the variance-covariance matrix of ξ̂ = (α̂, β̂, λ̂) as H−1
1 (ξ̂)

which is the inverse of expected information matrix based on the Data Set 1.

H−1
1 (ξ̂) =

 0.1154 0.0180 −0.0534
0.0180 0.0029 −0.0150
−0.0534 −0.0150 2.5823

 .

Next, we obtained the Standard error, t-value and P-value for the parameters α, β
and λ of the model GPD corresponding to the Data Set 1 are provided in Table 3.

Table 3. Parameter estimates, Standard error, t-value and P-value for the model GPD corresponding to the
Data Set 1

Parameters Estimates Standard error t-value P-value

α 3.3892 0.3397 9.977 0.001
β 0.2757 0.0543 5.071 0.001
λ 38.8351 1.6069 24.167 0.001

Thus 95% confidence interval for the parameters α, β and λ are obtained as
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(2.7233, 4.0550), (0.1692, 0.3821) and (35.6856, 41.9846) respectively.

Further, we have calculated the variance-covariance matrix of ξ̂ = (α̂, β̂, λ̂) for the

Data Set 2 by inverting H2(ξ̂) as given below.

H−1
2 (ξ̂) =

 0.831244 0.005640 −0.144705
0.005640 0.000045 −0.002455
−0.144705 −0.0024552 0.656329

 .

Now, we computed the Standard error, t-value and P-value for the parameters α, β
and λ of the model GPD corresponding to the Data Set 2 are presented in Table 4.

Table 4. Parameter estimates, Standard error, t-value and P-value for the model GPD corresponding to the

Data Set 2

Parameters Estimates Standard error t-value P-value

α 20.5384 0.9117 22.53 0.001
β 0.1122 0.0067 16.72 0.001
λ 7.1697 0.8101 8.85 0.001

Similarly, we obtained 95% confidence interval for the parameters α, β and λ are
(18.7515, 22.3253), (0.0990, 0.1253) and (5.5819, 8.7575) respectively.
We have ploted both empirical as well as theoritical pdfs and cdfs corresponding to
the models GPD, EWD, GEGD, GEPD and ELD to both the data sets considered in
the paper and presented in Figures 5 and 6. From Table 1 and 2, it can be observed
that the GPD yields better fit to both the data sets. The plots in the Figures 5 and 6
also supports the argument of the suitability of GPD to the data sets.
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Figure 5. Fitted densities and empirical and theoretical CDFs for the Data Set 1.
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The fatigue life of 6061-T6 aluminum coupons
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Figure 6. Fitted densities and empirical and theoretical CDFs for the Data Set 2.

Now by adopting the procedure discussed in the Sub-section 3.4, Now we test the
null hypothesis H0 : EPD versus the alternate hypothesis H1 : GPD or equivalently
H0 : α = 1 versus H1 : α ̸= 1. Similarly, we test the null hypothesis H0 : GD versus
the alternate hypothesis H1 : GPD or equivalently H0 : λ = 0 versus H1 : λ ̸= 0. The
numerical results obtained are given in Tables 5 and 6 respectively.

Table 5. Testing the significance of the parameter α of the GPD (α, β, λ) using GLRT

Data Set L(ξ̂∗ | y) or (H0 : α = 1) L(ξ̂ | y) or (H1 : α ̸= 1) LRT P-value
1 5.2146 × 10−86 3.3119 × 10−62 109.616 0.0001
2 2.63927× 10−39 8.2049× 10−9 140.424 0.0001

Table 6. Testing the significance of the parameter λ of the GPD (α, β, λ) using GLRT

Data Set L(ξ̂∗ | y) or (H0 : λ = 0) L(ξ̂ | y) or (H1 : λ ̸= 0) LRT P-value
1 6.2291 × 10−64 3.3119 × 10−62 7.946 0.0048
2 4.2949× 10−25 8.2049× 10−9 74.977 0.0001

In order to identify the shape of the hazard rate function of the data sets, we consider
a graphical method based on the Total Time on Test (TTT) plot. Thus we included
the empirical TTT plot using the following equation.

T (r/k) =

∑r
i=1 Z(i) + (k − r)Z(r)∑k

i=1 Z(i)

, r = 1, 2, . . . , k,

in which Z(i) and Z(r) denote the ith and rth order statistic of the sample. If the
empirical TTT transform is convex, concave, convex then concave and concave then
convex, the shape of the corresponding hazard rate function is decreasing, increasing,
bathtub-shaped and upside-down bathtub shape respectively. For details in this regard
see [1]. The TTT plots corresponding to the Data Sets 1 and 2 are presented in Figure
7.

From the Figure 7, it can be seen that Data Sets 1 and 2 possess increasing failure
rates.
For assessing how closely a data set fits a particular model, one can plot a probabil-
ity–probability plot (in short P-P plot). A P-P plot depicts the graph of the expected
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Figure 7. The empirical TTT plot based on the Data Set 1 and 2 respectively.

cumulative probability of a particular model against the observed cumulative proba-
bility. Here we obtain P-P plots of the respective models as in Figures 8 and 9. These
plots also support the suitability of the proposed model to both the data sets compared
to other existing models considered in the paper.
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Figure 8. P-P plots of the models for Data Set 1
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Figure 9. P-P plots of the models for Data Set 2
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5. Simulation study

For examining the performance of the maximum likelihood estimators of the parame-
ters α, β and λ, we carry out a brief simulation study. Since we cannot apply inverse
transformation method to simulate GPD random samples, we have generated the sam-
ples as per the following steps.

(1) Specification of the values of the parameter sets (α, β, λ) = (0.5, 4, 6) in the
first case and (2.3, 3, 7) in the second case.

(2) Specification of the sample size. Here we considered samples of size 50, 100, 500
and 1000.

(3) Generation of pseudo-random sample of GPD utilizing Metropolis–Hastings al-
gorithm for computation of the MLEs of the parameters using EM algorithm.

(4) Generation of 1000 samples.
(5) Computation of Bias and mean squared error (MSE).

The results obtained from the simulation study are presented in Table 7. We have used
the R Software ([13]) to find the estimates and sample generation. From Table 7, it is
evident that the MSE decreases as sample size increases.

Table 7. The absolute bias and MSEs corresponding to the estimates obtained via EM algorithm for simulated

samples.

n Parameter α = 0.5, β = 4, λ = 6 α = 2.3, β = 3, λ = 7
Bias MSE Bias MSE

50 α 0.6253 0.8966 0.2784 0.1132
β 0.4078 0.1988 0.5399 0.4699
λ 0.2746 0.1552 0.1143 0.0249

100 α 0.5119 0.4985 0.0607 0.0116
β 0.3456 0.1228 0.4130 0.2468
λ 0.1399 0.0678 0.0773 0.0104

500 α 0.1321 0.0199 0.0462 0.0075
β 0.2246 0.0539 0.2225 0.1053
λ 0.0260 0.0027 0.0502 0.0042

1000 α 0.0695 0.0055 0.0333 0.0019
β 0.0786 0.0097 0.0951 0.0180
λ 0.0064 0.0015 0.0138 0.0005

6. Summary and Discussions

Here we consider a new class of lifetime distribution with decreasing, increasing and
upside-down bathtub failure rate as a generalization of the EPD by [9]. We obtained
several important statistical properties of the proposed model and discussed various
methods of estimation such as method of maximum likelihood and method of EM
algorithm for estimating the parameters of the distribution. We have examined the
relevance of the proposed model with the help of certain real life data sets and it is
shown that the proposed model gives better fit to both the data sets considered in
section 4 compared to the existing models such as EWD, GEGD, GEPD and ELD
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based on the information measures: AIC, BIC, AICc, HQIC as well as K-S statistic,
P-values and log likelihood values. The likelihood ratio test procedures are applied for
testing the significance of the additional parameters of the model. Simulation studies
are also carried out for examining the performance of estimators obtained through the
procedure of EM algorithm. Even though several inferential aspects of the proposed
model are yet to study, which we hope to present through another publication.

Appendix A. Proof of Result 2

By definition, the c.d.f of the GPD with pdf (4) is

G(z) =

∫ z

0
g(t) dt

=

∫ z

0

λβα tα−1e
−λ−βt+λΓ(α,βt)

Γ(α)

Γ(α)(1− e−λ)
dt. (A1)

On simplification and puting u= Γ(α, βt) in (A1) to obtain following.

G(z) =
e−λ

1− e−λ

(
eλ − e

λΓ(α,βz)

Γ(α)

)
, (A2)

which gives

G(z) =
1− e

−λ+λΓ(α,βz)

Γ(α)

1− e−λ
.

Appendix B. Elements of the Information Matrix

The elements of the information matrix H(ξ) are as given below.

I11 =
∂2ℓ(ξ)

∂α2
=

1

Γ(α)

(
2 T (4, α, βzi) + 2 log(βzi) T (3, α, βzi)

+ log2(βzi) Γ(α, βzi)− 2 ψ(0)(α)
(
log(βzi) Γ(α, βzi) + T (3, α, βzi)

)
+ (ψ(0)(α)2 − ψ(1)(α))Γ(α, βzi)

)
− k ψ(1)(α), (B1)

I12 =
∂2ℓ(ξ)

∂α∂β
=
k

β
+

λ

Γ(α)

k∑
i=1

{
Γ(α, βzi)

β
− ln(βzi) e

−βzi(βzi)
α−1

− πzi

(Cosec(πα)
Γ(1− α)

− αCosec(πα)γ(α, βzi)

Γ(1− α)Γ(α+ 1)

)
+ zi T (3, α, βzi)

}
+ ψ(α) zi(βzi)

α−1 (B2)

I13 =
∂2ℓ(ξ)

∂α∂λ
=

1

Γ(α)

k∑
i=1

[
ln βzi Γ(α, βzi) + βzi T (3, α, βzi)− ψ(0)(α)Γ(α, βzi)

]
,

(B3)
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I22 =
∂2ℓ(ξ)

∂β2
=

−k α
β2

− λ

Γ(α)

k∑
i=i

zα−1
i

(
(α− 1)βα−2e−βzi − ziβ

α−1e−βzi
)
, (B4)

I23 =
∂2ℓ(ξ)

∂β∂λ
=

1

Γ(α)

k∑
i=1

(βzi)
α−1e−βzi (B5)

and

I33 =
∂2ℓ(ξ)

∂λ2
=

−k
λ2

− ek λ

(eλ − 1)2
(B6)
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